post

On Chip Diagnostics

We employ microfluidic and acoustic techniques to select, enrich and sort biological cells.

RBCs driven through a microchannel by acoustic actuation mimicking a heartbeat-like pressure profile

RBCs driven through a microchannel by acoustic actuation mimicking a heartbeat-like pressure profile

 

SAW-Actuated Circular Flow Chamber

Schmid, L., Wixforth, A., Weitz, D. A., and Franke, T. (2012) Novel surface acoustic wave (SAW)-driven closed PDMS flow chamber. Microfluidics and Nanofluidics, 12(1-4), pp. 229-235. (doi:10.1007/s10404-011-0867-5)

 

Non-Inertial-Lift

Geislinger, T. M., and Franke, T. (2014) Hydrodynamic lift of vesicles and red blood cells in flow — from Fåhræus & Lindqvist to microfluidic cell sorting. Advances in Colloid and Interface Science, 208, pp. 161-176. (doi:10.1016/j.cis.2014.03.002)

Geislinger, T.M., and Franke, T. (2014) Filtern war gestern: Sortierung von zirkulierenden Tumorzellen in Lab-on-a-Chip Systemen. GIT Labor-Fachzeitschrift, 4, pp. 50-52.

Geislinger, T. M., Chan, S., Moll, K., Wixforth, A., Wahlgren, M., and Franke, T. (2014) Label-free microfluidic enrichment of ring-stage Plasmodium falciparum-infected red blood cells using non-inertial hydrodynamic lift. Malaria Journal, 13(1), p. 375. (doi:10.1186/1475-2875-13-375)

Geislinger, T. M., and Franke, T. (2013) Sorting of circulating tumor cells (MV3-melanoma) and red blood cells using non-inertial lift. Biomicrofluidics, 7(4), 044120. (doi:10.1063/1.4818907)

Geislinger, T.M., Eggart, B., Braunmüller, S., Schmid, L., and Franke, T. (2012) Separation of blood cells using hydrodynamic lift. Applied Physics Letters, 100(18), p. 183701. (doi:10.1063/1.4709614)

others

Forsyth, A. M., Braunmüller, S., Wan, J., Franke, T., and Stone, H. A. (2012) The effects of membrane cholesterol and simvastatin on red blood cell deformability and ATP release. Microvascular Research, 83(3), pp. 347-351. (doi:10.1016/j.mvr.2012.02.004)

Issadore, D., Franke, T., Brown, K. A., and Westervelt, R. M. (2010) A microfluidic microprocessor: controlling biomimetic containers and cells using hybrid integrated circuit/microfluidic chips. Lab on a Chip, 10(21), pp. 2937-2943. (doi:10.1039/C0LC00092B)

Kerleta, V., Andrlik, I., Braunmüller, S., Franke, T., Wirth, M., and Gabor, F. (2010) Poloxamer 188 supplemented culture medium increases the vitality of Caco-2 cells after subcultivation and freeze/thaw cycles. Alternatives to Animal Experimentation, 27(3), pp. 191-197.

Issadore, D., Franke, T., Brown, K. A., Hunt, T. P., and Westervelt, R. M. (2009) High-voltage dielectrophoretic and magnetophoretic hybrid integrated circuit/microfluidic chip. Journal of Microelectromechanical Systems, 18(6), pp. 1220-1225. (doi:10.1109/JMEMS.2009.2030422)

Kerleta, V., Andrlik, I., Schneider, M., Franke, T., Wirth, M., and Gabor, F. (2009) Pluronic® F-68 enhances the nanoparticle-cell interaction. Scientia Pharmaceutica, 77(1), p. 179. (doi:10.3797/scipharm.oephg.21.SL-12)

Franke, T. A., and Wixforth, A. (2008) Microfluidics for miniaturized laboratories on a chip. ChemPhysChem, 9(15), pp. 2140-2156. (doi:10.1002/cphc.200800349)

Franke, T., and Wixforth, A. (2007) Das Labor auf dem Chip: Mikrofluidik. Physik in unserer Zeit, 38(2), pp. 88-94. (doi:10.1002/piuz.200601126)

Thalhammer, S., von Guttenberg, Z., Koehler, U., Zink, A., Heckl, W., Franke, T., Paretzke, H., and Wixforth, A. (2007) Programmierbares, zytogenetisches Submikroliter Chiplabor für molecular-diagnostische Anwendungen. GenomXPress, 2007(1), pp. 29-31.