On Chip Diagnostics

We employ microfluidic and acoustic techniques to select, enrich and sort biological cells.

RBCs driven through a microchannel by acoustic actuation mimicking a heartbeat-like pressure profile

RBCs driven through a microchannel by acoustic actuation mimicking a heartbeat-like pressure profile


SAW-Actuated Circular Flow Chamber

Schmid, L., Wixforth, A., Weitz, D. A., and Franke, T. (2012) Novel surface acoustic wave (SAW)-driven closed PDMS flow chamber. Microfluidics and Nanofluidics, 12(1-4), pp. 229-235. (doi:10.1007/s10404-011-0867-5)



Geislinger, T. M., and Franke, T. (2014) Hydrodynamic lift of vesicles and red blood cells in flow — from Fåhræus & Lindqvist to microfluidic cell sorting. Advances in Colloid and Interface Science, 208, pp. 161-176. (doi:10.1016/j.cis.2014.03.002)

Geislinger, T.M., and Franke, T. (2014) Filtern war gestern: Sortierung von zirkulierenden Tumorzellen in Lab-on-a-Chip Systemen. GIT Labor-Fachzeitschrift, 4, pp. 50-52.

Geislinger, T. M., Chan, S., Moll, K., Wixforth, A., Wahlgren, M., and Franke, T. (2014) Label-free microfluidic enrichment of ring-stage Plasmodium falciparum-infected red blood cells using non-inertial hydrodynamic lift. Malaria Journal, 13(1), p. 375. (doi:10.1186/1475-2875-13-375)

Geislinger, T. M., and Franke, T. (2013) Sorting of circulating tumor cells (MV3-melanoma) and red blood cells using non-inertial lift. Biomicrofluidics, 7(4), 044120. (doi:10.1063/1.4818907)

Geislinger, T.M., Eggart, B., Braunmüller, S., Schmid, L., and Franke, T. (2012) Separation of blood cells using hydrodynamic lift. Applied Physics Letters, 100(18), p. 183701. (doi:10.1063/1.4709614)


Forsyth, A. M., Braunmüller, S., Wan, J., Franke, T., and Stone, H. A. (2012) The effects of membrane cholesterol and simvastatin on red blood cell deformability and ATP release. Microvascular Research, 83(3), pp. 347-351. (doi:10.1016/j.mvr.2012.02.004)

Issadore, D., Franke, T., Brown, K. A., and Westervelt, R. M. (2010) A microfluidic microprocessor: controlling biomimetic containers and cells using hybrid integrated circuit/microfluidic chips. Lab on a Chip, 10(21), pp. 2937-2943. (doi:10.1039/C0LC00092B)

Kerleta, V., Andrlik, I., Braunmüller, S., Franke, T., Wirth, M., and Gabor, F. (2010) Poloxamer 188 supplemented culture medium increases the vitality of Caco-2 cells after subcultivation and freeze/thaw cycles. Alternatives to Animal Experimentation, 27(3), pp. 191-197.

Issadore, D., Franke, T., Brown, K. A., Hunt, T. P., and Westervelt, R. M. (2009) High-voltage dielectrophoretic and magnetophoretic hybrid integrated circuit/microfluidic chip. Journal of Microelectromechanical Systems, 18(6), pp. 1220-1225. (doi:10.1109/JMEMS.2009.2030422)

Kerleta, V., Andrlik, I., Schneider, M., Franke, T., Wirth, M., and Gabor, F. (2009) Pluronic® F-68 enhances the nanoparticle-cell interaction. Scientia Pharmaceutica, 77(1), p. 179. (doi:10.3797/scipharm.oephg.21.SL-12)

Franke, T. A., and Wixforth, A. (2008) Microfluidics for miniaturized laboratories on a chip. ChemPhysChem, 9(15), pp. 2140-2156. (doi:10.1002/cphc.200800349)

Franke, T., and Wixforth, A. (2007) Das Labor auf dem Chip: Mikrofluidik. Physik in unserer Zeit, 38(2), pp. 88-94. (doi:10.1002/piuz.200601126)

Thalhammer, S., von Guttenberg, Z., Koehler, U., Zink, A., Heckl, W., Franke, T., Paretzke, H., and Wixforth, A. (2007) Programmierbares, zytogenetisches Submikroliter Chiplabor für molecular-diagnostische Anwendungen. GenomXPress, 2007(1), pp. 29-31.